Fractal Model for Coarse-Grained Nonlinear Partial Differential Equations
نویسندگان
چکیده
Spatially coarse-grained (or effective) versions of nonlinear partial differential equations must be closed with a model for the unresolved small scales. For systems that are known to display fractal scaling, we propose a model based on synthetically generating a scale-invariant field at small scales using fractal interpolation, and then analytically evaluating its effects on the large, resolved scales. The procedure is illustrated for the forced Burgers equation, solved numerically on a coarse grid. Detailed comparisons with direct simulation of the full Burgers equation and with an effective viscosity model are presented. [S0031-9007(96)02215-6]
منابع مشابه
Tension dynamics in semiflexible polymers. I. Coarse-grained equations of motion.
Based on the wormlike chain model, a coarse-grained description of the nonlinear dynamics of a weakly bending semiflexible polymer is developed. By means of a multiple-scale perturbation analysis, a length-scale separation inherent to the weakly bending limit is exploited to reveal the deterministic nature of the spatio temporal relaxation of the backbone tension and to deduce the corresponding...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملAn experimental study on hydraulic behavior of free-surface radial flow in coarse-grained porous media
The equations of fluids in porous media are very useful in designing the rockfill and diversion dams, gabions, breakwaters and ground water reserves. Researches have been showed that the Forchheimer equation is not sufficient for the analysis of hydraulic behavior of free-surface radial flows; because, in these flows, in addition to the hydraulic gradient and velocity, the variable of radius is...
متن کاملHomotopy Perturbation Method and Aboodh Transform for Solving Nonlinear Partial Differential Equations
Here, a new method called Aboodh transform homotopy perturbation method(ATHPM) is used to solve nonlinear partial dierential equations, we presenta reliable combination of homotopy perturbation method and Aboodh transformto investigate some nonlinear partial dierential equations. The nonlinearterms can be handled by the use of homotopy perturbation method. The resultsshow the eciency of this me...
متن کاملCoarse-graining a restricted solid-on-solid model.
A procedure suggested by Vvedensky for obtaining continuum equations as the coarse-grained limit of discrete models is applied to the restricted solid-on-solid model with both adsorption and desorption. Using an expansion of the master equation, discrete Langevin equations are derived; these agree quantitatively with direct simulation of the model. From these, a continuum differential equation ...
متن کامل